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Abstract. At the heart of many scientific applications is the solution of algebraic systems,
such as linear systems of equations, eigenvalue problems, and optimization problems, to name
a few. TOPS, which stands for Towards Optimal Petascale Simulations, is a SciDAC applied
math center focused on the development of solvers for tackling these algebraic systems, as well
as the deployment of such technologies in large-scale scientific applications of interest to the
U.S. Department of Energy. In this paper, we highlight some of the solver technologies we have
developed in optimization and matrix computations. We also describe some accomplishments
achieved using these technologies in UNEDF, a SciDAC application project on nuclear physics.

1. Introduction
Over the last couple of decades, simulation science has become as important as theoretical
and experimental science. The success of simulation science hinges on the ability to perform
the calculations efficiently. The inner most kernel in these calculations is often the solution
of algebraic systems, including, but not limited to, systems of linear and nonlinear equations,
eigenvalue problems, optimization problems, and sensitivity analysis. TOPS, which stands for
Towards Optimal Petascale Simulations, is a multi-institutional SciDAC applied math center
that focuses on the development of solvers for tackling these algebraic systems, as well as the
deployment of such technologies in large-scale scientific applications, particularly those of interest
to the U.S. Department of Energy.

In this paper, we highlight two specific areas of TOPS: eigenvalue calculations and
optimization. In particular, we highlight some accomplishments we have achieved in
collaboration with computational physicists in UNEDF. The goal of the UNEDF SciDAC
application project [1] is to obtain a comprehensive understanding of nuclei and their reactions
based on the most accurate knowledge of the strong nuclear interaction. Eigenvalue calculations
come up in the solution of the nuclear Schrödinger equation [2, 3]. The eigenvalues and the
eigenvectors correspond to the energy states and wave functions. Numerical optimization
techniques are needed in building the next generation of nuclear energy functionals, which will



provide nuclear physicists better tools for predicting the properties and behavior of atomic nuclei
over the entire nuclear table.

2. Eigenvalue Calculations
In nuclear configuration interaction calculation, it is sometimes necessary to investigate, among
others, nuclear level densities as a function of the total angular momentum J and excitation
energy, and to evaluate scattering amplitudes as a function of J [4]. We will refer to this as a
total-J calculation in this paper. In this type of calculation, we are interested in computing a
relatively large number of states with a prescribed J value.

One brute-force approach to a total-J calculation is to simply compute a large number of
eigenvalues and wave functions of a nuclear many-body Hamiltonian, for example in an M-
scheme basis (good angular momentum projection along the z-axis), and select, among these
wave functions, the ones that have a prescribed J value. This approach is appropriate when
the number of desired energy states and wave functions is small (e.g., ten to twenty states).
When that is not true, or when certain properties of a nucleus pertaining to a fixed J are
to be calculated, the brute-force approach may require computing a very large number of
wave functions, and the computational cost for performing this type of calculation may be
prohibitively high. Furthermore, even if we can afford to perform this type of calculation, this
may not be an efficient use of resources because we compute a large number of wave functions
only to throw away most of them because they do not have the desired J value.

We have developed an alternative approach where we construct an invariant subspace Z
that contains all wave functions associated with a fixed J value in advance and project the
nuclear many-body Hamiltonian into this subspace to produce a projected Hamiltonian with the
minimum dimension consistent with that chosen J . A sparse matrix diagonalization procedure
[5, 6, 7] is then applied to this projected Hamiltonian to obtain the desired energy states and
their corresponding wave functions.

To construct Z, we need to work with the total angular momentum square operator Ĵ2 and
compute the null space of Ĵ2 − λI, where λ = J(J + 1) is a known eigenvalue of Ĵ2.

When the many-body basis states associated with the configuration space are properly
ordered and grouped, Ĵ2 becomes block diagonal: Ĵ2 = diag(Ĵ2

1 , Ĵ
2
2 , ..., Ĵ

2
ng

). Therefore, the

task of computing the desired null space of Ĵ2 − λI reduces to that of computing the desired
null spaces of Ĵ2

i − λI, for i = 1, 2, ..., ng.

However, because the dimensions of the Ĵ2
i ’s vary over a wide range (e.g., from 1 to more

than 36,000 for 12C, Nmax = 6), it is difficult to maintain a good load balance in the null space
calculation. Here, Nmax is a parameter limiting the total number of oscillator quanta allowed
in the many-body states.

We developed a multi-level task and data distribution scheme to achieve optimal parallel
performance in the null space calculation by

(i) Limiting the granularity of the parallelism; that is, we try to divide the overall task into many small
tasks of limited sizes so that good load balance arises from distributing these small tasks evenly
among different processors.

(ii) Limiting the communication overhead incurred in the null space calculation so that the overall time
of the computation can be minimized.

To achieve these inherently conflicting goals, we classified Ĵ2
i blocks into small, medium

and large groups based on the estimated computational loads associated with computing the
desired null space of Ĵ2

i −λI, and the estimated ratio of communication volume to floating point
operations count.

The small Ĵ2
i blocks are distributed among all processors based on their computational load

by a greedy algorithm. The null spaces of these matrices are computed by a sequential LAPACK



rank-revealing QR subroutine. No communication is involved in these calculations. Each one
of the medium-sized Ĵ2

i blocks is assigned to a subgroup of processors by the same greedy
algorithm. The null space calculation for such a block is parallelized among processors within
the same subgroup, which will incur some communication overhead. Finally, the desired null
space calculation for a large Ĵ2

i block is carried out in parallel on all processors.

We implemented three different algorithms for computing the null space of Ĵ2
i −λI for medium

and large blocks.

(i) Randomized rank-revealing QR (RQR). The algorithm performs two standard QR factorizations of
dense matrices without pivoting. Although we do not take advantage of the sparsity of Ĵ2

i in this
approach, it is more efficient than other approaches when the dimension of the desired null space is
relatively large (e.g. larger than 10% of the dimension of Ĵ2

i ).

(ii) Shift-invert Lanczos (SIL), which requires solutions of sparse linear systems.

(iii) Polynomial accelerated subspace iteration (PASI). We apply a standard subspace iteration [8] to the
matrix p(Ĵ2

i ), where p(ω) is a polynomial that assumes the value of 1 at ω = λ, and has a much

smaller magnitude (than 1) in other parts of the spectrum of Ĵ2
i .

Table 1 shows that our load balance scheme is much better than a brute-force approach of
distributing Ĵ2

i in a cyclic fashion to different processors. Table 2 shows that PASI is more
efficient when J=0. The randomized QR algorithm appears to be more efficient for larger J
values. However, when J becomes very large, which typically results in smaller dimension of the
null space, PASI becomes more efficient again.

Table 1. A comparison between the greedy load
balancing algorithm with a parallel algorithm
based on a cyclic distribution of Ĵ2

i blocks in
terms of wall clock time (in seconds). (np is the
number of processors.)

time (secs)

core Nmax alg np cyclic greedy
6Li 12 PASI 120 131 132
12C 4 PASI 120 6.1 5.2
12C 6 PASI 496 608 295
6Li 12 RQR 120 233 193
12C 4 RQR 120 18.7 17.0
12C 6 RQR 496 1220 900

Table 2. RQR decomposition vs PASI for
different J values. Both methods use the
greedy load balancing technique. Times are
in seconds.

time (secs)

core (Nmax,J) np RQR PASI
6Li (12, 0) 120 193 132
6Li (12, 1) 120 195 464
6Li (12, 12) 496 140 95
12C (6, 0) 496 900 295
12C (6, 1) 496 890 > 1, 800
12C (6, 12) 496 840 105

3. Optimization
Optimization plays a central role in the building of next-generation nuclear energy functionals,
including functionals based on density functional theory (DFT) and/or ab initio calculations.
In the case of DFT-based functionals, for example, a primary computational bottleneck is
determining parameter values so that the functional agrees with data on a set of observables
such as binding energies, radii, and odd-even staggering [9]. Mathematically, we need to solve
the optimization problem

min
x

{
f(x) =

o∑
i=1

(
di − s(θi;x)

σi

)2

: lj ≤ xj ≤ uj , j = 1, . . . , n

}
, (1)



200 400 600 800 1000 1200 1400

10
1

10
2

10
3

10
4

Number of Evaluations

B
es

t f
 v

al
ue

 fo
un

d

 

 

POUNDER
POUNDER warm
POUNDERS
POUNDERS warm

Figure 1. Exploiting structure in param-
eter estimation problems substantially re-
duces the number of required simulation
evaluations.
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Figure 2. Quantifying the computational
noise for a deterministic simulator across
2,049 nuclei.

where n parameter values must be determined from a set of data of o observables. Challenges
in solving this problem include the computational expense of, and the noise resulting from, the
iterative calculations performed when simulating the theoretical observable s(θi;x), and the fact
that derivatives of some simulated observables with respect to certain parameters xj may not
be available (or even exist) for use by an optimization algorithm.

As part of SciDAC efforts, we have developed POUNDERS (Practical Optimization Using
No DERivatives for Sums of squares), an algorithm for derivative-free optimization of nonlinear
least-squares problems such as (1). A key benefit of POUNDERS is that it works with the
individual residuals (di − s(θi;x))/σi rather than the aggregated fit function f(x). As a result,
POUNDERS can take advantage of the availability of the derivatives of some observables (e.g.,
binding energies) and can approximate nonlinearities in f using simulations at fewer x values. As
part of the TOPS collaboration, POUNDERS is now available through the open-source Toolkit
for Advanced Optimization (TAO) [10].

Figure 1 quantifies the computational savings in this ability to exploit the sums of squares
structure in (1) for a fit to 2,049 binding energies. By working with the residuals, the
POUNDERS variants obtain far better fits in far fewer evaluations than the analogous variants
of POUNDER, a similar algorithm that does not have access to the residuals. The warm variants
illustrate the benefit of using external simulations, done as part of an initial experimental design,
to warm start the optimization.

The savings in Figure 1 can be substantial. For the more complex functional optimized in
[11], each evaluation of f requires 14.4 CPU hours. The resulting parameterization is then
used to perform a simulation of nuclei across the nuclear table in a calculation requiring 9,000
processors for more than half a day [9].

Mathematical work has also contributed to the sensitivity analysis of nuclear energy
functionals. Though the simulations are typically deterministic, the aforementioned
computational noise can obfuscate the number of reliable digits in computed functional
properties. The ECNoise algorithm described in [12] estimates a standard deviation-like quantity
using only a few simulations. Figure 2 illustrates the relative noise in the computed binding
energies for 2,049 nuclei with the parameterization obtained from the POUNDERS optimization
in Figure 1. Estimates of the noise can, for example, reveal limitations on the predictability of
computed functional observables and can enable stable approximations of the noisy derivatives
needed for sensitivity analysis.



4. Conclusions
Our work on eigenvalue calculations has made several impacts on nuclear structure calculations.
Earlier collaborations with nuclear physicists led to significant improvements to an eigensolver for
configuration interaction calculation, which was subsequently used in predicting the properties
of 14F before the isotope was observed experimentally. The work described in this paper takes
configuration interaction calculation one step further. It enables our physics collaborators to
efficiently compute energy states of a nuclei with a prescribed total angular momentum instead
of computing many energy states and identifying those corresponding to the prescribed total
angular momentum.

The optimal parameters we have delivered to our physics collaborators have resulted in
realistic functionals that are now being explored by a variety of groups outside of the UNEDF
collaboration (as evidenced in the most recent JUSTIPEN conference (http://massexplorer.
org/justipen/index.php)). For example, our current results show remarkable power for
predicting fission barrier heights, which is a first step toward a microscopic understanding of
fission. These results are a consequence of including a richer set of experimental data and more
free parameters, resulting in problems that can be solved only by an efficient, state-of-the-art
optimization algorithm.

Acknowledgments
The work under TOPS at ANL and LBNL was supported by the Office of Advanced Scientific Computing
Research of the U.S. Department of Energy under contracts DE-AC02-06CH11357 (ANL), and DE-AC02-
05CH11231 (LBNL). The UNEDF SciDAC collaboration was supported by the U.S. Department of Energy
under grant numbers DE-FC02-09ER41582. This work was also supported by the Office of Nuclear Physics of
the U.S. Department of Energy under grant numbers DE-FG02-87ER40371 (Iowa State), DE-FG02-07ER41529
(Univ. of Tennessee) and DE-FG02-96ER40963 (Univ. of Tennessee).

Computational resources were provided through an INCITE award (James Vary, PI) at ORNL and ANL,

and by the Laboratory Computing Resource Center (LCRC) at ANL, the National Energy Research Scientific

Computing Center (NERSC) at LBNL, and the National Center for Computational Sciences at ORNL.

References
[1] http://www.unedf.org.
[2] J.P. Vary, P. Maris, E. Ng, C. Yang and M. Sosonkina. Ab initio nuclear structure – the large sparse matrix

eigenvalue problem. Journal of Physics: Conference Series, 180:012083, 2009.
[3] P. Sternberg, E.G. Ng, C. Yang, P. Maris, J.P. Vary, M. Sosonkina, and H.V. Le. Accelerating Configuration

Interaction Calculations for Nuclear Structure. In Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (Austin, Texas, November 15 - 21, 2008). Conference on High Performance Networking
and Computing. IEEE Press, Piscataway, NJ, 1-12.

[4] A.M. Shirokov, A.I. Mazur, S.A. Zaytsev, J.P. Vary and T.A. Weber. Nucleon-nucleon interaction in the J-
matrix inverse scattering approach and few-nucleon systems. Phys. Rev. C , 70:044005-1–044005-23, 2004.

[5] R.B. Lehoucq, D.C. Sorensen, P. Vu, and C. Yang. ARPACK: An implementation of the Implicitly Re-started
Arnoldi Iteration that computes some of the eigenvalues and eigenvectors of a large sparse matrix , 1995.
Available from ftp.caam.rice.edu under the directory pub/software/ARPACK.

[6] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue
Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

[7] D.C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on
Matrix Analysis and Applications, 13(1):357–385, January 1992.

[8] B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.
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